Reduced Speed/Work Zone Warning Concept
V2I Deployment Coalition Discussion
August 18, 2015
Acknowledgement and Disclaimer

This material is based upon work supported by the U.S. Department of Transportation under Cooperative Agreement No. DTFH6114H00002.

Any opinions, findings, and conclusions or recommendations expressed in this publication are those of the Author(s) and do not necessarily reflect the view of the U.S. Department of Transportation.
Agenda

- Background
- V2I Safety Applications Project
- Reduced Speed/Work Zone Warning
 - Concepts
 - Testing & Evaluation
 - Example Deployment Scenarios
- Some Open Questions
The Federal Highway Administration (FHWA) is conducting a research program to develop Vehicle-to-Infrastructure (V2I) applications that could potentially provide safety, mobility, and environmental improvements to the national highway transportation system.

- ‘Applications’ refers to vehicle- and infrastructure-based electronic systems that utilize wireless communications between vehicles and infrastructure components to provide information / warnings to the driver and/or potential control actions.

- Program began January 2014 and is planned to run for five years
- The CAMP V2I Consortium (FCA, Ford, GM, Honda, Hyundai-Kia, Mazda, Nissan, Subaru, Volvo Truck, and VW/Audi) is responsible for the execution of the various projects authorized under a CAMP/FHWA Cooperative Agreement
- The initial set of projects in this program is expected to focus on Cooperative Adaptive Cruise Control, V2I Safety Applications, Road Weather Management Program, Data Capture and Management, and Eco-Driving
A representative cross section of applications to explore implementation of V2I communication-based safety systems

Three applications addressing intersections, vehicle speed, and localized variances in normal traffic flow chosen as pilot applications for further investigation:

1. Intersection Safety – Red Light Violation Warning (RLVW)
2. Vehicle Speed – Curve Speed Warning (CSW)
3. Traffic Variances – Reduced Speed/Work Zone Warning (RSZW)
 a. Reduced Speed in Work and School Zone (RSZW-RS)
 b. Reduced Speed in Work Zone with Lane Closure (RSZW-LC)

Prototype implementations of each application will be developed for evaluation in OEM test vehicles

August 18, 2015

The information contained in this document is considered interim work product and is subject to revision. It is provided for informational purposes only.
Reduced Speed/Work Zone Warning Concept (1)

- Designed to warn drivers of speed in excess of the posted speed limit in reduced speed zones and changed roadway configurations

- Infrastructure Application Component
 - RSE connection to TMC and/or local network in work zone
 - Speed limit/work zone information provided to vehicle

- Vehicle Application Component
 - OBE issues alert to driver to reduce speed or change lanes

TMC – Traffic Management Center

August 18, 2015
Reduced Speed/Work Zone Warning Concept (2)

1. **Relevance**
 - Evaluate relevance of the surrounding work zones
 - Determine work zone based on vehicle approach

2. **Map Matching**
 - Work/School zone map
 - Determine vehicle position
 - Road level for RS
 - Lane level for LC
3. **Warning Level Assessment**
 - For Reduced speed
 - Vehicle speed
 - Distance from start of work zone
 - Speed limit in work zone / presence of workers
 - For Lane Closure
 - Vehicle lane position
 - Lane closure
 - Vehicle speed
 - Distance from start of lane closure
 - Vehicle status (e.g. turn signal)

4. **Inform/Warning Generation**
 - Inform: Work/School zone / Lane closure
 - Warning: Reduce Speed / Lane closure warning (if necessary)
RSZW Testing & Evaluation

Test Goal:
Validate time and location of the issuance and/or suppression of the application’s “Inform” and “Warning” messages to the driver under various test conditions and approach speeds
RSZW Testing

Closed Test Track (Fowlerville, MI)
– Six test scenarios will be conducted at the test track to validate the application performance
– Test scenarios will cover variable speed approaches for reduced speed zone (work/school zone) and lane closures with and without presence of workers
RSZW Evaluation

Public Road:

Application evaluation for infrastructure interaction:

I. Reduced Speed: Hills Tech Dr., near CAMP facility
II. Lane Closure: Farmington Road at W. 13 Mile Road

©2015 Google, Inc. Used with Permission

Hills Tech Dr. Farmington Rd at W. 13 Mile
Potential Work Zone Warning
Deployment Scenarios

Examples Based on the European Approach
Example Work Zone Deployment Scenarios

A. Stand-alone trailer
B. Backend-based interface approach
C. Integrated approach
Example Work Zone Deployment Scenario
(A) Stand-alone Trailer

A self contained trailer consisting of:

- GPS
- DSRC communication equipment
- Work zone configuration interface
Example Work Zone Deployment Scenario (A) Stand-alone Trailer

Pros:
• No communication with backend required
• Easy setup and configuration (e.g. in conjunction with trailer display)
• Appropriate for dynamic (moving) road works (e.g. hard shoulder cleaning, grass cutting)

Cons:
• May provide limited information about the work zone (lane level map may not be available)
• Speed limit information may not be available (if not configured in the trailer)
Example Work Zone Deployment Scenario

(B) Backend-based Interface Approach

Pros:
• Information can be communicated to RSU at the work zone
• Trailer not required at work zone

Cons:
• Deployment of RSU with communication is required
• May require additional equipment such as power for RSU
Example Work Zone Deployment Scenario (C) Integrated Approach

• Work zone Trailer hardware:
 • GPS
 • DSRC communication equipment
 • Work zone configuration interface
• Communication interface with backend server
Example Work Zone Deployment Scenario
(C) Integrated Approach

Pros:
• Work zone location validation can be achieved
• Additional information can be transmitted (speed limits, work zone map data, ...) to the RSU

Cons:
• Communication (Cellular) connection required
• Interface with TMC required
Some Open Questions

• In case of stand-alone trailer (A) solution:
 – How would the broadcast of the work zone messages be triggered?
 – What information could an operator input that could improve warning to the driver?
 – What would be the interface for the operator look like?
 – Where would the trailer be placed with reference to the start of the work zone?

• In case of back-end interface (B) or integrated (C) solution:
 – How would the validation of the data be performed?
 • Actual position the work zone vs. TMC assumed position
 • Accurate position of lane closures